Structure Reports

Online
ISSN 1600-5368

Jan Fábry,* Jindřich Chval and Václav Petríček

Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 18221 Praha 8, Czech Republic

Correspondence e-mail: fabry@fzu.cz

Key indicators

Single-crystal X-ray study
$T=290 \mathrm{~K}$
Mean $\sigma($ Si-F $)=0.001 \AA$
R factor $=0.018$
$w R$ factor $=0.022$
Data-to-parameter ratio $=11.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

A new modification of diammonium hexafluorosilicate, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SiF}_{6}$

A hexagonal modification $\left(\mathrm{P6}_{3} m c\right)$ of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SiF}_{6}$ was grown accidentally. This new modification has the unit-cell c parameter doubled with respect to a previously reported trigonal form $(P \overline{3} m 1)$ of the title compound. The H atoms in the present structure are ordered. Three or even four F atoms are hydrogen-bond acceptors for each H atom. The structure is isostructural with modifications of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{MnF}_{6}, \mathrm{~K}_{2} \mathrm{GeF}_{6}$ and $\mathrm{Rb}_{2} \mathrm{GeF}_{6}$.

Comment

Until now, two modifications of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SiF}_{6}$ have been known (ICSD; Bergerhoff et al., 2001; PDF-2: ICDD, 2001): trigonal $P \overline{3} m 1$ (Schlemper \& Hamilton, 1966; PDF-2 44-1424 and 721548) and cubic Fm $\overline{3} m$ (Hanic, 1966; PDF-2 07-0013, 72-1552 and 72-1759). The trigonal and cubic modifications are also known by their respective mineralogical names bararite and cryptohalite. The cubic modification is stable at room temperature (Schlemper \& Hamilton, 1966). In the cubic modification, the positions of the H atoms were determined; they were not determined in the trigonal modification. According to both the neutron-diffraction study (Schlemper \& Hamilton, 1966) and the electron-diffraction study (Vainshtein \& Stasova, 1956) the H atoms in the cubic modification are disordered.

In this study, two modifications were grown in the same beaker, viz. hexagonal and cubic. The crystals of each modification were quite easily distinguishable in cross-polarized light as well as by their habit. While the habit of the cubic modification was cubic, the hexagonal modification grew as trigonal or hexagonal pyramids. The typical size of both crystal modifications was several tenths of a millimetre.

Attempts at chemical analysis were hindered by the small amount of available crystals. An electron microprobe analysis [JEOL JXA733 (JEOL Ltd, Tokyo, Japan) with X-ray analyzer KEVEX (Delta Class Analyzer; Kevex Instruments, San Carlos, California, USA)] was not successful in the determination of the proportion of constituent elements P, Si, O and F because of the fluffy grains on the surface of the sample. These fluffy grains contained predominantly Si, F and K. It should be noted that the microprobe analysis was not performed on the sample that was used for the structure determination. Nevertheless, the satisfactory result of the structure analysis shows that $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SiF}_{6}$ can also form a superstructure, either as a transitory state or stabilized by traces of K.

The previously determined trigonal modification shows similarities with the present structure in the orientation of the $\mathrm{Si}-\mathrm{F}$ bonds with regard to the unit-cell axes. It should be noted that the structure determined in this study is isostruc-

Received 30 August 2001
Accepted 13 September 2001
Online 29 September 2001

Figure 1
The unit-cell contents of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SiF}_{6}$ viewed along the c axis. Ellipsoids are at the 30% probability level (ORTEPIII; Burnett \& Johnson, 1996).
tural with one of the known modifications of $\mathrm{K}_{2} \mathrm{GeF}_{6}$ (Bode \& Brockmann, 1952) and $\mathrm{Rb}_{2} \mathrm{GeF}_{6}$ (ibid.). The structure is also isostructural with $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{MnF}_{6}$ (Kaskel \& Straehle, 1997) for which the positions of the H atoms were determined.

The H atoms were readily seen in the difference Fourier maps and could be easily refined with no applied constraints or restraints. All the H atoms are ordered. Each N atom in the structure is surrounded by six F atoms with fairly similar N $\ldots \mathrm{F}$ distances. The distribution of four H atoms among six surrounding F atoms results in the distances between the H and F atoms being unequal despite the regularity of the $\mathrm{N} \cdots \mathrm{F}$ distances. Table 2 lists the closest $\mathrm{N} \cdots \mathrm{F}$ distances and angles.

Experimental

The present compound grew from a solution which was prepared by neutralization of stoichiometric amounts of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$ and $\mathrm{H}_{2} \mathrm{PO}_{3} \mathrm{~F}$ in the molar proportion 1:1. Most probably some of the fluorophosphate anions have decomposed with production of HF which reacted with the glass of the beaker. In addition to the structure which is reported here, the cubic modification was also grown, in fact, in larger amount. Its lattice parameters corresponded to those determined by e.g. Hanic (1966).

Crystal data

$$
\begin{aligned}
& 2\left(\mathrm{NH}_{4}\right) \cdot\left(\mathrm{SiF}_{6}\right) \\
& M_{r}=178.15 \\
& \text { Hexagonal, } P 6_{3} m c \\
& a=5.8955(10) \AA \\
& c=9.599(1) \AA \\
& V=288.93(8) \AA^{3} \\
& Z=2 \\
& D_{x}=2.047 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Mo $K \alpha$ radiation

Cell parameters from 68 reflections
$\theta=8.5-19.1^{\circ}$
$\mu=0.46 \mathrm{~mm}^{-1}$
$T=290 \mathrm{~K}$
Pyramid, colourless
$0.40 \times 0.35 \times 0.30 \mathrm{~mm}$

Data collection

Kuma KM-4 diffractometer
$w / 2 \theta$ scans
1682 measured reflections
361 independent reflections
348 reflections with $I>3 \sigma(I)$
$R_{\text {int }}=0.020$
$\theta_{\max }=30.0^{\circ}$

$$
\begin{aligned}
& h=-7 \rightarrow 7 \\
& k=0 \rightarrow 7 \\
& l=-13 \rightarrow 13 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 200 \text { reflections } \\
& \text { intensity decay: } 1.5 \%
\end{aligned}
$$

Refinement

Refinement on $F \quad$ All H-atom parameters refined
$R=0.018$
$w R=0.022$
$w=1 /\left(\sigma^{2}(F)+0.0001 F^{2}\right)$
$S=1.70$
361 reflections
$(\Delta / \sigma)_{\max }<0.001$

31 parameters
Table 1
Selected distances (\AA).

$\mathrm{Si}-\mathrm{F} 1(\times 3)$	$1.700(1)$	$\mathrm{Si}-\mathrm{F} 2(\times 3)$	$1.695(1)$

Table 2
Hydrogen-bonding geometry ($\left(\AA,{ }^{\circ}\right.$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 1 n 1 \cdots \mathrm{~F}^{1}{ }^{\text {i }}$	0.85 (3)	2.49 (4)	2.975 (2)	117 (3)
$\mathrm{N} 1-\mathrm{H} 1 n 1 \cdots \mathrm{~F} 1^{\text {ii }}$	0.85 (3)	2.65 (4)	2.962 (2)	103 (3)
$\mathrm{N} 1-\mathrm{H} 1 n 1 \cdots \mathrm{~F}^{\text {iii }}$	0.85 (3)	2.28 (2)	2.972 (1)	139 (3)
$\mathrm{N} 1-\mathrm{H} 1 n 1 \cdots \mathrm{~F}^{\text {ii }}$	0.85 (3)	2.28 (2)	2.972 (1)	139 (3)
$\mathrm{N} 2-\mathrm{H} 1 n 2 \cdots \mathrm{~F} 1^{\text {iv }}$	0.82 (3)	2.58 (3)	3.023 (1)	115 (2)
$\mathrm{N} 2-\mathrm{H} 1 n 2 \cdots \mathrm{~F} 1^{\text {v }}$	0.82 (3)	2.58 (3)	3.023 (1)	115 (2)
$\mathrm{N} 2-\mathrm{H} 1 n 2 \cdots \mathrm{~F}^{\text {vi }}$	0.82 (3)	2.29 (3)	3.022 (2)	149 (3)
$\mathrm{N} 1-\mathrm{H} 2 n 1 \cdots \mathrm{~F}^{\text {vii }}$	0.8 (1)	2.45 (7)	2.962 (2)	124 (3)
N1-H2n1 \cdots F1 ${ }^{\text {viii }}$	0.8 (1)	2.45 (7)	2.962 (2)	124 (3)
$\mathrm{N} 1-\mathrm{H} 2 n 1 \cdots \mathrm{~F} 1^{\text {ii }}$	0.8 (1)	2.45 (7)	2.962 (2)	124 (3)
$\mathrm{N} 2-\mathrm{H} 2 n 2 \cdots \mathrm{~F}^{\text {iv }}$	0.86 (8)	2.62 (5)	3.241 (2)	130 (1)
$\mathrm{N} 2-\mathrm{H} 2 n 2 \cdots \mathrm{~F}^{\text {ix }}$	0.86 (8)	2.62 (5)	3.241 (2)	130 (1)
$\mathrm{N} 2-\mathrm{H} 2 n 2 \cdots \mathrm{~F}^{\mathrm{x}}$	0.86 (8)	2.62 (5)	3.241 (2)	130 (1)

Symmetry codes: (i) $1+x-y, x, \frac{1}{2}+z$; (ii) $-x+y,-x, z$; (iii) $1-y, x-y, z$; (iv) $x-y, x, \frac{1}{2}+z$; (v) $y-1,-1-x+y, \frac{1}{2}+z$; (vi) $-y, x-y, z$; (vii) $1+x, y, z$; (viii) $1-y, 1+x-y, z ;$ (ix) $y, x, \frac{1}{2}+z ;$ (x) $-x,-y, \frac{1}{2}+z$.

The inversion-twinning proportion determined by refinement turned out to be insignificant.

Cell refinement: $K M 4 B 8$ (Gałdecki et al., 1997); data reduction: JANA2000 (Petříček \& Dušek, 2000); structure solution: JANA2000; program(s) used to refine structure: JANA2000; molecular graphics: ORTEPIII (Burnett \& Johnson, 1996).

The support of this study by the grants 203/99/0067 and 202/ $00 / 0645$ of the Grant Agency of the Czech Republic and A1010017 of the Grant Agency of the Academy of Sciences of the Czech Republic is gratefully acknowledged.

References

Bergerhoff, G., Hundt, R., Sievers, R. \& Brown, I. D. (2001). J. Chem. Inf. Comput. Sci. 23, 66-69. [ICSD - Inorganic Crystal Structure Database; release Spring 2001.]
Bode, H. \& Brockmann, R. (1952). Z. Anorg. Allg. Chem. 269, 173-178.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Oak Ridge National Laboratory, Tennessee, USA.
Gałdecki, Z., Kowalski, A., Kucharczyk, D. \& Uszyński, I. (1997). KM4B8. Oxford Instruments, Oxford, England.
Hanic, F. (1966). Chem. Zvesti, 20, 738-751.
Kaskel, S. \& Straehle, J. (1997). Z. Anorg. Allg. Chem. 623, 1259-1263.
ICDD (2001). PDF-2: The Powder Diffraction File. The International Centre for Diffraction Data, 12 Campus Boulevard, Newtown Square, PA 190733273, USA.
Petříček, V. \& Dušek, M. (2000). JANA2000. Institute of Physics, Czech Academy of Sciences, Czech Republic.
Schlemper, E. O. \& Hamilton, W. C. (1966). J. Chem. Phys. 45, 408-410.
Vainshtein, B. K. \& Stasova, M. M. (1956). Kristallografiya, 1, 311-320.

